Goethals, S., Sörensen, K., & Martens, D. (2023). The privacy issue of counterfactual explanations: explanation linkage attacks. ACM Transactions on Intelligent Systems and Technology, 14(5), 1-24.
Vermeire, T., Brughmans, D., Goethals, S., de Oliveira, R. M. B., & Martens, D. (2022). Explainable image classification with evidence counterfactual. Pattern Analysis and Applications, 25(2), 315-335.
Goethals, S., Martens, D., & Evgeniou, T. (forthcoming). Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem. Joint European Conference on Machine Learning and Knowledge Discovery.
Goethals, S., Martens, D., & Calders, T. (2023). Explainability methods to detect and measure discrimination in machine learning models. In European Workshop on Algorthmic Fairness. CEUR workshop proceedings (Vol. 3442, pp. 1-5).
Mazzine, R., Goethals, S., Brughmans, D., & Martens, D. (2021). Counterfactual explanations for employment services. In International workshop on Fair, Effective And Sustainable Talent management using data science (pp. 1-7).